在线观看精品国内_欧美午夜精品一区区电影_国产在线视频欧美_日韩精品视频秒播网站_日韩美欧国产在线视频

快速發布求購| | | | | 加微群|
關注我們
本站客戶服務

線上客服更便捷

儀表網官微

掃一掃關注我們

|
客戶端
儀表APP

安卓版

儀表手機版

手機訪問更快捷

儀表小程序

更多流量 更易傳播


您現在的位置:儀表網>分析檢測>資訊列表>科學島團隊提出遙感圖像融合領域的頻域無關特征學習框架

科學島團隊提出遙感圖像融合領域的頻域無關特征學習框架

2024年10月21日 10:55:53 人氣: 15461 來源: 合肥物質科學研究院
  【儀表網 研發快訊】近期,中國科學院合肥物質院智能所謝成軍與張潔團隊提出了一種全新的頻域無關特征學習框架,為多源異構遙感圖像的統一表征與自適應融合提供了新的解決方案。該研究在計算機視覺領域TOP國際期刊IEEE Transactions on Circuits and Systems for Video Technology.(IEEE TCSVT)上發表。
 
  遙感圖像全色銳化是遙感圖像處理方向的核心技術,它通過融合高分辨率的全色圖像和低分辨率的多光譜圖像,從而生成細節更加豐富、視覺清晰度更高的高分辨率多光譜遙感圖像。這項技術在提升光學遙感衛星的空間分辨率與光譜分辨率平衡方面具有重要應用價值,然而,現有的遙感圖像全色銳化方法在面對分布外數據時通常會出現顯著的性能下降,原因在于其假設訓練集和測試集的數據分布相同。
 
  為克服上述挑戰,研究團隊提出了全新的頻域無關特征學習框架。該方法通過分析圖像幅值與相位分量中的域無關信息分布,利用頻率信息分離模塊和可學習的高頻濾波器來對圖像信息進行解耦,再將這些信息輸入專門設計的子網絡進行學習。最終,經過信息融合與恢復模塊的動態特征通道權重調整,生成高質量的融合圖像。在多個公開數據集上的跨場景測試結果表明,該方法在泛化性能方面表現優越,能夠有效應對不同數據分布的挑戰。通過在WorldView-III數據集上訓練,并將其泛化到其他數據集進行測試,該方法不僅在訓練數據集上保持了卓越的表現,且在泛化數據集上相比次優方法,分別在WorldView-II和GaoFen-2數據集上取得了1.46 dB和4.97 dB的峰值信噪比(PSNR)提升。此外,視覺效果的對比驗證了該框架在域無關信息提取和學習上的有效性,能夠在數據分布存在顯著差異的情況下,保持穩定的性能。這進一步證明了該方法在解決遙感圖像全色銳化泛化問題中的重要價值。
 
  該項工作得到了安徽省自然科學基金項目的資助。張潔副研究員和碩士生曹可為論文的共同第一作者。張俊、周滿為論文的共同通訊作者。
 
圖 1 基于頻域解耦的遙感圖像全色銳化域無關特征學習網絡
 
圖 2 可學習的高頻濾波模塊
 
表1在WorldView-III數據集上訓練的跨數據集實驗
 
圖 4 WorldView-II 數據集上的泛化實驗結果 
關鍵詞: 遙感圖像
全年征稿/資訊合作 聯系郵箱:ybzhan@vip.qq.com
版權與免責聲明
1、凡本網注明"來源:儀表網"的所有作品,版權均屬于儀表網,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明"來源:儀表網"。違反上述聲明者,本網將追究其相關法律責任。
2、本網轉載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點或證實其內容的真實性,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品來源,并自負版權等法律責任。
3、如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
4、合作、投稿、轉載授權等相關事宜,請聯系本網。

企業推薦

更多
聯系我們

客服熱線: 0571-87759942

加盟熱線: 0571-87756399

媒體合作: 0571-87759945

投訴熱線: 0571-87759942

關注我們
  • 下載儀表站APP

  • Ybzhan手機版

  • Ybzhan公眾號

  • Ybzhan小程序